
J Eng Math (2010) 66:217–236
DOI 10.1007/s10665-009-9343-6

How to adaptively resolve evolutionary singularities
in differential equations with symmetry

C. J. Budd · J. F. Williams

Received: 6 February 2009 / Accepted: 28 September 2009 / Published online: 22 October 2009
© Springer Science+Business Media B.V. 2009

Abstract Many time-dependent partial differential equations have solutions which evolve to have features with
small length scales. Examples are blow-up singularities and interfaces. To compute such features accurately it is
essential to use some form of adaptive method which resolves fine length and time scales without being prohibi-
tively expensive to implement. In this paper we will describe an r-adaptive method (based on moving mesh partial
differential equations) which moves mesh points into regions where the solution is developing singular behaviour.
The method exploits natural symmetries which are often present in partial differential equations describing phys-
ical phenomena. These symmetries give an insight into the scalings (of solution, space and time) associated with
a developing singularity, and guide the adaptive procedure. In this paper the theory behind these methods will be
developed and then applied to a number of physical problems which have (blow-up type) singularities linked to
symmetries of the underlying PDEs. The paper is meant to be a practical guide towards solving such problems
adaptively and contains an example of a Matlab code for resolving the singular behaviour of the semi-linear heat
equation.

Keywords Blow-up · Matlab · PDE · r-Adaptivity

1 Introduction

The numerical solution of many nonlinear evolutionary differential equations requires some form of adaptivity
both in space and time in order to generate reliable solutions efficiently. This is due to the difficult nature of the
underlying physical phenomena with evolving structures on small time and length scales, possibly manifesting as
shocks, singularities, localization or moving interfaces. Regular, as well as even non-regular, but fixed temporal or
spatial meshes are often unable to resolve this structure due to the transient character of such behaviour. Adaptive
meshes allow enhanced resolution in certain regions of the time–space domain, capturing natural time and length
scales and often allowing for the computations to be extended where non-adaptive methods breakdown. There

C. J. Budd
Department of Mathematical Sciences, University of Bath, Claverton Down, Bath BA2 7AY, UK
e-mail: mascjb@bath.ac.uk

J. F. Williams (B)
Department of Mathematics, Simon Fraser University, Burnaby, BC V5A1S6, Canada
e-mail: jfw@math.sfu.ca

123

218 C. J. Budd, J. F. Williams

are typically three approaches to mesh adaptivity known as p, h and r [1]. While combinations of the different
approaches are possible, dynamic r -adaptivity is the focus of this paper, which aims to describe an efficient r -adap-
tive method to simulate evolving singularities. Whilst not as widely used as h or p adaptive methods, r -adaptivity
has been used with success in many applications including computational fluid mechanics [1], phase-field models
and crystal growth [2], and convective heat transfer [3]. It also has a natural application to problems with a close
coupling between spatial and temporal length scales, such as in problems with symmetry, scaling invariance and
self-similarity [4,5], where the mesh points Xi (t) become the natural coordinates for an appropriately rescaled
problem and the adaptive method inherits the natural underlying dynamics of the solution.

In this paper, for the sake of exposition, we focus on partial differential equations, and systems, which are posed
in one space dimension and acted on by scaling symmetry groups. In particular we show that r -adaptivity has
a natural interpretation in the context of such equations, and that solution monitors driven by considerations of
symmetry, lead to highly effective adaptive meshing procedures. We give a practical guide to both the choice of
the (optimal) adaptive mesh (in both space and time) and also effective discretizations of the underlying PDE on
such a (moving) mesh. This will then be illustrated by a number of example computations. The general scaling and
adaptive techniques that we describe extend to higher dimension with some additional theoretical machinery and in
Sect. 6 we present one two-dimensional example. For further details on higher-dimensional adaptivity see [3,6–8].

2 Singularities and symmetry structures in PDEs

In this section we look at some of the symmetries which occur in the solutions of PDEs which are invariant under the
action of certain scaling symmetry groups. Many nonlinear evolutionary differential equations, have the property
that for certain initial data they develop blow-up solutions u(x, t) which become singular at a single point x∗ in a
finite time T . Typically such solutions develop a peak of amplitude U (t) → ∞ and width L(t) → 0 as t → T
as illustrated in Fig. 1. Examples of PDEs with this property include: the semilinear heat equation with polynomial
nonlinearity

ut = uxx + u p, p > 1, (1)

the nonlinear Schrödinger equation when posed in dimension d ≥ 2,

iut = ∇2u + |u|2u, (2)

the long-wave unstable thin-film equation

ht = −(hhxxx + h phx)x , p > 3, (3)

and the semilinear wave equation

utt = ∇2u + |u|p−1u, p > 1. (4)

Related to these are models which exhibit derivative blow-up such as the radially symmetric harmonic map heat
flow

θt = θrr + 1

r
θr − sin 2θ

2r2 (5)

and an example of pinch-off in a model for thin-films

ht = −(h phxxx)x , 0 < p < 1. (6)

Asymptotically the solution, or a derivative, often has the separated asymptotic form

u(x, t) = U (t)V (ξ), ξ = (x − x∗)/L(t), (7)

in the peak when |x − x∗| is small. Here U (t) → ∞ as t → T and V is a regular function of the scaled variable
ξ . This scaled variable represents a natural coordinate in which to express the solution and to use for numerical

123

How to adaptively resolve evolutionary singularities in differential equations with symmetry 219

Fig. 1 A typical peak,
indicating the scaling
relationship as the
singularity develops for a
self-similar solution

u(t)

L(t)

L(t)−β/α

calculations. An optimal r -adaptive method which correctly follows the underlying dynamics of such a PDE, should
automatically distribute the computational mesh along these natural coordinates in both space and time. Our aim in
this paper is to show how such meshes can be constructed and how the PDE can be discretized effectively on such
a mesh.

A general class of partial differential equations which admit such singular solutions, of the form described in
(7), are those with a scaling structure, so that the partial differential equation is invariant (at least locally) under
transformations of the form

t → λt, x → λαx, u → λ−βu. (8)

Each of the example equations considered above is invariant under the group rescaling (8). The exact structure of the
rescaling depends on whether the equation is of semi- or quasi-linear type and the exact form of the nonlinearities.
For example, (1) is invariant under the group rescaling t �→ λt, x �→ λ1/2x, u �→ λ−1/(p−1)u. Whereas the unsta-
ble thin-film equation (3) is invariant under t �→ λt, x �→ λ(p−2)/2(2p−3)x, u �→ λ−1/(2p−3)u. These differential
equations may then admit (separable) self-similar solutions which are themselves invariant under the action of the
scaling transformation. These typically take the form

u(x, t) = (T − t)−β V (x/(T − t)α), (9)

and have a natural length and solution scale given by

L(t) = (T − t)α, U (t) = L(t)−β/α (10)

as illustrated in Fig. 1. More generally if we introduce a slow variable τ = log(T − t) (so that τ → ∞ as t → T),
and set

u(x, t) = (T − t)−βv(y, τ), y = x/(T − t)α (11)

then we may analyze the blow-up solutions by recasting the PDE in the rescaled variables [9, Chap. 2] so that it
takes the generic form

vτ = F(v, vy, vyy). (12)

For example in the case of (1) with a polynomial nonlinearity, this leads to a problem of the form

vτ = ∇2
yv + v p − 1

p − 1
v − 1

2
yvy . (13)

Observe that if x is fixed and t → T then y → ∞ and hence to be meaningful in the context of the underlying PDE,
the rescaled equation is typically posed on the full or half line and must have certain decay conditions at infinity,
often taking the form limy→∞ v(y, τ)vq = constant for some q > 0. In contrast, using the same rescaled variables,
the thin-film equation becomes

vτ = −(vvyyy − vyv
p)y − 1

(2p − 3)
v − p − 3

2(2p − 3)
yvy . (14)

123

220 C. J. Budd, J. F. Williams

In this case, the similarity profiles are defined on a finite interval (of possibly unknown length)

0 = −(ϕϕ′′ − ϕ′ϕ p)′ − 1

(2p − 3)
ϕ − p − 3

2(2p − 3)
yϕ′,

0 = ϕ′ = ϕ′′′ for y = 0,

0 = ϕ = ϕ′ for y = y∗.

In this case, in the limit t → T we see that x∗ = (T − t)p y∗ → 0 and thus the blow-up profile collapses to the
origin. Assuming single-point blow-up, the remainder of the solution remains O(1) in this limit and is thus fairly
straightforward to resolve. This distinction makes one aspect of the numerical resolution of blow-up of semilinear
problems more difficult than conservative quasilinear problems.

A similarity solution of the underlying PDE then corresponds exactly to a non-constant steady solution of the
rescaled equation (12) satisfying the ODE

F(v, vy, vyy) = 0, (15)

together with the boundedness conditions at infinity (so that they are homoclinic or heteroclinic solutions of such
equations) or other appropriate boundary conditions. Such solutions exist in the case of the nonlinear Schrödinger
equation in three-dimensions and many other examples of such problems are found in [4]. However, in many prob-
lems the only solutions of (15) satisfying the growth conditions at infinity are zero or constant, and the self-similar
profile does not adequately describe the asymptotic form of the singularity. This class of problems includes the
semilinear heat equation in one dimension and chemotaxis systems and the nonlinear Schrödinger equation in two
dimensions. To study the asymptotic form of the solutions of (11) we must then consider the center-manifold of the
system in the neighbourhood of this zero (or constant) solution. This typically leads to approximately self-similar
solutions for which the solution scale and/or the length scale have additional logarithmic terms so that (for example)

L(t) = (T − t)α| log(T − t)|κ . (16)

Both of these cases will be considered in this paper, and we show that the scale invariant r -adaptive method will
correctly distribute the mesh in both cases. Our basic goal is to show that r -adaptivity based on symmetry mimics
many of the features of studying the problem in the similarity co-ordinates. This is a natural transformation to make
and is done routinely in the analysis of such problems, but, recall, that the exact transformation is not known a
priori. The use of scaling allows the use of the emerging symmetry structure to guide the adaptive procedure without
building the explicit transformation in to the numerical scheme. This allows for methods applicable to a broad class
of problems and greater confidence in the observed dynamics.

3 Introduction to r-adaptivity for blow-up problems

3.1 Overview

When semi-discretizing a PDE of the form (for example) of (1), it is usual impose a fixed spatial mesh Xi with
discrete solution values Ui (t) satisfying Ui (t) ≈ u(Xi , t). When discretizing the PDE we then construct a set
of ordinary differential equations for the unknowns Ui (t) in which the spatial derivatives are replaced by terms
involving Ui , typically constructed by finite-difference, finite-element, finite-volume or collocation methods. For
example, a simple finite-difference approximation to (1) can take the form

U̇i =
Ui+1 − Ui

Xi+1 − Xi
− Ui − Ui−1

Xi − Xi−1
Xi+1 − Xi−1

2

+ U p
i . (17)

The resulting ODES can then be solved by using appropriate ODE solution software such as the Matlab routine
ode15s.

123

How to adaptively resolve evolutionary singularities in differential equations with symmetry 221

Two immediate criticisms can be made of the discretization (17) on a fixed mesh. From a numerical point of view,
the discretization of any spatial derivatives will cease to be accurate (or indeed meaningful) if the spatial length-scale
L(t) is smaller than the smallest value of Hi ≡ Xi+1 − Xi . This is an acute problem in any calculation of blow-up
in which we may easily have L(t) = 10−15. In such cases a fixed mesh would have to take Hi < 10−15 and hence
of the order of 1015 points would be needed in any calculation using a uniform spatial mesh. Of course, this problem
can be overcome if extra mesh points are added close to the singularity as the evolution of the solution proceeds.
When done in the context of suitable a-posteriori estimates of the solution error, this leads to the h-adaptive method
for such problems. Secondly, and more fundamentally, the use of such a fixed mesh destroys the scaling structure
of the PDE and the discrete system (17) does not admit any scaling symmetries of the form (8) unless α = 0.

A solution to both of these issues is to allow the mesh points Xi ≡ Xi (t) to move with time as the solution
evolves. By doing this we may, firstly, concentrate the mesh points into the region of the singularity so that the
spacing of the points there can be very small, even if the spacing between other points is much larger. Secondly, we
can create an extended system comprising both the solution and the mesh points which can then admit the scaling
structure of the underlying PDE. In a moving mesh method we must prescribe equations which determine the motion
of the mesh points. Typically these will take the form of ODES such as Ẋ = G(Xi , Ui), and we will explain how
these can be derived in the next sub-section. The PDE is then discretized on this mesh using a finite-difference,
finite-element or collocation method. Such a discretization will lead to a system of ODES of the form

A(X, U)U̇i + B(X, U)Ẋ = F(X, U), (18)

where X = (X1, X2, . . .), U = (U1, U2, . . .). As an example, a discretization of (1) taking the same form as (17)
but this time posed on a moving mesh takes the form

U̇i − Ui+1 − Ui−1

Xi+1 − Xi−1
Ẋi =

Ui+1 − Ui

Xi+1 − Xi
− Ui − Ui−1

Xi − Xi−1
Xi+1 − Xi−1

2

+ U p
i . (19)

Here the additional term on the left-hand side of this expression is an additional advective term which occurs because
Ui is an approximation to u(Xi (t), t) and we note that du(Xi (t), t)/dt = ut (Xi , t)+ux Ẋi , so that ut = du

dt −ux xt .

It is immediate that if the PDE (1) is invariant under the scaling transformation

t → λt, x → λαx, u → λβu, (20)

then the discrete equation (19) has exactly the invariance t → λt, Xi → λα Xi , Ui → λβUi . This follows from
the almost obvious observation that

the actions of linear scaling and discretization commute.

For example under the above scalings, the differential operator ux scales as λβ−α as does its finite-difference
approximation (Ui+1 − Ui−1)/(Xi+1 − Xi−1). For this reason, if the underlying PDE has the scaling invariance
(20), then so will the discretized system (18). As a direct consequence, there is a constant γ for which the various
terms in (18) have the following scalings

F(λα Xi , λ
βUi) = λγ F(Xi , Ui),

λβ−1 A(λαX, λβU) = λγ A(X, U),

λα−1 B(λαX, λβU) = λγ B(X, U).

(21)

In the case of a fixed finite-difference discretization, the operator A is constant, so that γ = β − 1
When evolving a PDE on a moving mesh it is usual to solve the two equations of (18) and the mesh equation

simultaneously so that they become one larger system. We require this to have the same symmetries as the underlying
PDE. This then implies that the function G describing the mesh velocities must satisfy the functional equation

G(λα Xi , λ
βUi) = λα−1G(Xi , Ui). (22)

We will give examples of such functions in the next sub-section. We then observe that the symmetries of the PDE
then lead to symmetries of the (extended set) of ODEs discretizing it on the moving mesh. (In Sect. 4 we will

123

222 C. J. Budd, J. F. Williams

show that such ODEs can be discretized in a manner which respects this scaling structure by using the Sundman
transformation.)

A significant advantage of doing this is that the combined system describing the solution and the mesh may then
admit discrete self-similar solutions . It follows immediately from (21) and (22) that the combined ODE system for
the solution and the mesh admits a discrete self-similar solution of the form

Ui (t) = t−β Vi , Xi (t) = tαYi , (23)

where Yi and Vi are constant in time and satisfy the discrete difference equations

β A(Y, V)Vi + αB(Y, V)Yi = F(Yi , Vi), αYi = G(Y, V). (24)

(Note that we can substitute T − t for t in (23) if needed). Equation (24) is a consistent discretization of the ODE
satisfied by the true self-similar solution on the mesh Yi . Thus the true shape of the self-similar solution will
be captured by this method, even if the self-similar solution corresponds to a singular physical solution. More
generally, following the discussion of the previous section, we can introduce a new slow variable τ = log(t) (or
τ = log(T − t)) and consider a solution in the form

Ui (t) = tβ Vi (τ), Xi (t) = tαYi (25)

Substituting this then satisfies the ODE system

A(Y, V)(βVi + Vi,τ) + αB(Y, V)Yi = F(Yi , Vi), αYi = G(Y, V). (26)

This is again a consistent discretization of the ODE system satisfied by the rescaled solution in the previous section
and will admit an approximately self-similar solution in the same manner. The above discussion shows that if a
singularity is described by a true or an approximate self-similar solution then an invariant r -adaptive method should
be able to compute it. We now consider how to construct such a method.

3.2 Moving mesh PDES and equidistribution

Moving mesh PDES, MMPDEs based on equidistribution, give a coherent mechanism for constructing moving
meshes with the symmetry properties required in the previous sub-section. To construct such methods we introduce
a computational coordinate ξ in a suitable computational space
C (typically the interval [0, 1]) and consider the
mesh points Xi to be the image of a uniform mesh in
C under the map x(ξ, t) from
C into the physical space
P

(where the underlying PDE is posed) so that Xi (t) = x(i�ξ, t). Typically this is done so as to make the equation
‘smoother’ or better resolved in the computational space. In one dimension this procedure is well understood, being
based on the equidistribution principle [10]. In its integral form one poses a monitor function M(x) and determines
a bijective mapping x :
c = [0, 1] →
p = [0, a] such that

x(ξ)∫

0

M(s)ds = ξ

a∫

0

M(s)ds, ξ ∈
c = [0, 1]. (27)

Any standard discrete approximation to (27) will then have the property that the integral of the monitor function is
the same over each computational interval. This has the desirable consequence that if the monitor function is taken
to be the local error then this method produces the optimal mesh with the total error being minimized. Another,
more useful geometric interpretation comes from differentiating of (27) with respect to ξ ,

M(x)xξ =
a∫

0

M(x)dx ⇒ (M(x)xξ)ξ = 0. (28)

123

How to adaptively resolve evolutionary singularities in differential equations with symmetry 223

3.3 Scale-invariant MMPDEs

A continuous in time adaptive strategy using equidistribution is to solve the physical PDE and the mesh equation
simultaneously. This determines a coupled system of differential algebraic equations for the solution and the grid.
In practice, this system is difficult to start and only neutrally stable in time. An extension of this is to use moving
mesh PDEs (MMPDEs) whose steady-state solutions in time are identically (28). This parabolic regularization of
(28) leads to smoother mesh trajectories in time and reduces overall stiffness in the DAE. Many different MMPDEs
have been proposed and used and the important properties such as stability and prevention of node crossing are
well understood. A widely used MMPDE is given by

− εxtξξ = (M(x)xξ)ξ , ε � 1, (29)

which is known as MMPDE6 as described in [11]. The system (29) can then be discretized in terms of the com-
putational coordinate to give a series of differential equations for Xi . For example a simple centered discretization
gives

− ε
ẋi+1 − 2ẋi + ẋi−1

�ξ2 = Mi+1/2(xi+1 − xi) − Mi−1/2(xi − xi−1)

�ξ2 , (30)

where

Mi+1/2 = M(xi+1) + M(xi)

2
.

In this formulation the small parameter ε determines the relaxation timescale for convergence to the stationary
profile (28) and the Laplacian acting on ẋ helps control the smoothness of the right-hand side (and thus reduce
stiffness). The idea of scale invariant mesh adaptation is to choose a monitor function M(u(x, t)) > 0 so that (22) is
satisfied. In terms of time integration this means that the grid and solution should evolve on the same timescale. This
means that the mesh should never be seen to “freeze” but should continue to adapt as the singularity is approached
but should not adapt so rapidly that the system describing the mesh becomes overly stiff. For this we require that
the monitor function satisfy the functional equation

M(λαx, λβu, λβ−αux) = λ−1 M(x, u, ux). (31)

As an example, in (1) we have β = −1/(p − 1). If we consider M(x, u, ux) ≡ M(u) then from (31) we have
simply that M = u p−1. This approach to adaptivity has been successfully used to compute blow-up profiles in
many cases; see [14,15]. Unfortunately, it has the undesirable effect of absorbing all available grid nodes into the
blow-up region as t → T and the computations often halt due to lack of resolution in the O(1) tail region, not
the blow-up core! In this paper we shall use a small but vital alteration in order to better resolve all aspects of the
solution we define the corrected monitor function Mc

Mc(x, u, ux) ≡ M(x, u, ux) + α

a∫

0

M(x, u, ux)dx . (32)

The standard case with α = 0 has been previously used in the references above for the computation of blow-up
and with α = 1 was developed for the computation of singularly perturbed boundary-value problems in [16]. In
the latter case approximately half of the mesh points are in the peak and half in the tail of the solution. In the case
of blow-up problems Mc is asymptotically close to M in the peak region so that the symmetry properties of the
solution are not affected there and the mesh will still reproduce self-similar types of behaviour.

By choosing M to satisfy (31) we do not directly use the local truncation error of our spatial discretization method.
Using the local truncation error as a monitor function would generate optimal grids in the sense of the smallest
constant in an asymptotic error estimate. Unfortunately, this approach would require a very accurate representation
of a high derivative of a singular solution which is not always available on non-uniform grids. Instead we use the
scaling properties of the solution to let a well resolved aspect of the solution indicate where the grid should be
refined. It should be noted, however, that this approach turns even semilinear PDEs into fully nonlinear systems
and so its effectiveness must be in some way justified.

123

224 C. J. Budd, J. F. Williams

3.4 Temporal behaviour of scale invariant MMPDEs

When all quantities are order one, Eq. 29 is simply a parabolic regularization to (28). Because the parameter ε � 1
we would anticipate that the timescale of the mesh dynamics to be faster than the PDE on that mesh and hence that
the mesh to be quasi-equidistributed at all times. However, this conclusion is not immediately clear in the case of
blow-up where the quantities involved are not always order one and we conclude this section with a brief analysis
of this case for the problem (1).

To do this, we consider the effects of taking a more general monitor function which is an arbitrary power of u
given by M = |u|q . We now substitute the solution expressed in the scaled variables

(T − t)1/(p−1)u(x, t) = v(y, τ),

x(ξ, t) = (T − t)1/2 y(ξ, τ) = eτ/2 y(ξ, τ),

τ = − log(T − t)

in (29). After some manipulation this gives

− ε∂ξξ

(
yτ − y

2

)
= (T − t)1−q/(p−1)

(
vq yξ

)
ξ
. (33)

We consider three cases.

(1) If q < p − 1, then as t → T − the RHS of (33) is asymptotic to zero, and we have

−∂ξξ (yτ − y/2) = 0.

When coupled to the scaled boundary conditions y(0, τ) = 0, y(1, τ) = eτ/2 this equation has the solution

y(ξ, τ) = eτ/2w(ξ),

where w(ξ) is arbitrary. This implies that as t → T then x(ξ, t) convergences to w(ξ). In other words, the
spatial mesh freezes and there is no possibility of resolving the singularity.

(2) If q > p −1, then as t → T − the RHS of (33) rapidly tends to infinity. The differential equation thus becomes
stiffer and stiffer, and even in the computational co-ordinates the mesh dominates the time-stepping, with any
computations generally breaking down early [12].

(3) If q = p − 1, then in the similarity co-ordinates both the MMPDE and rescaled PDE are order one and we
have

− ε∂ξξ

(
yτ − y

2

)
= (

vq yξ

)
ξ
, so that ε

(
yτ − y

2

)
= G

(
vq yξ

)
ξ
, (34)

where the Green’s function G = (−∂ξξ)
−1 is a positive compact operator which acts as a strongly stabilizing

function. We observe that as vq > 0 is a regular function of ξ then this equation is essentially a rescaling of
the heat equation and it has stable solutions provided that ε is sufficiently small; see [6]. Hence the grid will
stabilize quickly to the equidistributed case in the similarity variables satisfying (a suitable discretization of)
the equation

− ε
y

2
= G

(
vq yξ

)
ξ
, (35)

This is the scale-invariant regime that we will attempt to always work in. Of course, in practice we will use
Mc = M + α, but as α � M(x) in the peak this calculation will not be affected there.

4 Temporal adaptivity

4.1 Scaling in ordinary differential equations and the Sundman transform

The previous section has shown how we may use a semi-discrete spatially adaptive method to approximate the
solution of a PDE by the solution of a set of ODEs. When considering blow-up problems these equations will have

123

How to adaptively resolve evolutionary singularities in differential equations with symmetry 225

singularities in time, with large changes in behaviour as t → T . This can lead to very stiff equations and they
are very hard to solve using a standard numerical method. Furthermore, if a constant step-size is used in the time
integration then not only will the singularity be missed (in the case of explicit methods) or not computed at all (in
the case of implicit methods). Furthermore, as in the PDE case, the use of a constant size time-step destroys the
scaling structure of the ODES. Both of these problems can be overcome by using a suitable adaptive method and
we now describe one based on rescaling.

To reduce the amount of stiffness and allow for the possibility of scaling we introduce a computational time
coordinate τ so that computations in this coordinate become more regular. A natural way to do this is via the
Sundman transform [17] in which we set dt

dτ
= g(u) and express all ordinary differential equations in terms of

τ . Thus the complete system used to calculate the solution of a PDE using both a moving mesh and a Sundman
transformation is given by

A(X, U)Ui,τ + B(X, U)Xi,τ = g(U)F(X, U),

Xi,τ = g(U)G(X, U), dt
dτ

= g(U),
(36)

where X = (X1, X2, . . .), U = (U1, U2, . . .). To generalize this discussion we consider an extended vector W =
(U, X) so that the combined solution and mesh can be considered to solve the one system of ODEs given by

dW
dt

= f(W), f : Rn �→ Rn . (37)

Under the Sundman transform (37) becomes

du

dτ
= g(W)f(W) (g : Rn �→ R). (38)

This system can then be solved using a standard numerical method such as BDF3 with a fixed step size �τ . In
[17,18] an analysis is made of the choice of g when solving ordinary differential equations with a similar scaling
structure to that in (8). It is shown that, if g is a function of u only and if g satisfies the scaling law

g(λβu) = λg(u), (39)

then the numerical method inherits discrete self-similar solutions which uniformly approximate the true self-similar
solution. Such methods are thus very well suited to calculating singular solutions of the form (7). For example,
suppose that we wish to solve (1), then motivated by the scaling law (39) we choose

g(u) = 1

‖u(·, t)‖p−1∞
,

which, upon substitution, leads to the differential equation

dt

dτ
= T − t

v(0)
so that τ = − log(T − t)

v(0)
.

We can see that the computational coordinate automatically identifies the slow time-scale of the similarity solution
even though the blow-up time T is unknown. Observe that if �τ is fixed then the corresponding temporal step size
�t is given, to leading order, by

�t = (T − t)v(0)�τ

so that the temporal step size chosen is proportional (as it should be) to the natural time-scale (T − t) of the
underlying solution.

In practice, this method is very robust as it provides adaptivity without the need to approximate high derivatives.
It is also efficient in that, in theory, no overhead is required to adaptively choose the stepsizes. However, starting
moving mesh methods is non-trivial and standard adaptive approaches may be required at this stage. At the begin-
ning of integration both the highly nonlinear coupling between solution and grid and that the grid needs to rapidly
adjust mean that there is initially considerable stiffness. In practice, this lessens as self-similar structures emerge.

123

226 C. J. Budd, J. F. Williams

4.2 Other forms of step-size control

Most modern software packages for solving ODEs have inbuilt adaptive stepsize control. This adaptation is per-
formed by a local approximation of a higher derivative, often (in the use of the Milne device) by comparing an
intermediate calculation of the solution by a high-order method with one by a low-order method. However, this
approach can potentially be problematic when computing blow-up-type solutions. To see this, in the context of
using a linear multi-step method, we suppose that we have a time-integration method of order q − 1, for which the
absolute local truncation error at the n-th time-step has the form

en ≈ C(�tn)q dqu

dtq
.

Then any adaptive time-stepping strategy will try to keep this quantity small and approximately constant hence
equidistributing the error (or more possibly constrained to lie within lower an upper bounds) throughout the inte-
gration. In the case of a blow-up similarity solution the natural time-scale is (T − t) and as we have seen above
it is desirable that the computational time-step should scale accordingly and hence scale like T − t . However, in
the case of the simple ODE du/dt = u p we have a blow-up solution of the form u = K/(T − t)1/(p−1). A simple
calculation then shows that if the above error estimate is used to determine �tn then we have

�tn ≈
⎛
⎜⎝ C

dqu

dtq

⎞
⎟⎠

1
q

from which we have the estimate

�tn ≈ (T − t)
1

q(p−1)
+1

This calculation shows that the estimated time-step is much smaller than (T − t) and hence the timestep restric-
tion becomes overly severe very quickly. Moreover, as the solution is blowing up any numerical estimate of the

derivative dqu
dtq is likely to become increasingly less reliable leading to an instability in the choice of �tn . We see

evidence for this in the next subsection.

4.3 ODE examples

We now consider two simple examples in order to highlight the advantages of the rescaling approach to adaptivity
based on the Sundman transform over the use of standard error control.

4.4 Example 1

A simple problem which exhibits finite time blow-up is given by
du

dt
= u2, u(0) = 1. (40)

This problem has the exact solution

u(t) = 1

1 − t
, t ∈ [0, 1).

The ODE is invariant under the transformation

t �→ λt, u �→ 1

λ
u

and hence a scale-invariant method is given by taking
dt

dτ
= g(u) = 1

u
leading to the system

123

How to adaptively resolve evolutionary singularities in differential equations with symmetry 227

Table 1 Example 1: Comparison of calculations on the rescaled and original ODEs

u(T) Sundman Standard
ode15s ode45 ode15s ode45

1010 445 1101 1149 1679

6.3 × 1012 577 1383 1477 2147

1.8 × 1013 597 1429 FAIL 2234

10100 4330 10774 FAIL FAIL

The values of u(T) = 6.3 × 1012 and 1.8 × 1013 correspond to the points at which the Implicit and Explicit solvers failed for the ODE
in standard form. The solvers for the transformed system could carry on until u(T) approached the largest representable number in
Matlab: 1.7977 × 10308

du

dτ
= u and

dt

dτ
= 1

u
, (41)

with u(0) = 1, t (0) = 0. One striking feature of this transformation is that it has linearized the ODE for the unknown
variable u. The trade-off for this is a nonlinear transformation of the time variable. In the case of ODEs this may not
seem all that desirable, however, for singular PDEs the actual blow-up time may not be of primary interest, instead
it is the blow-up rate that we are concerned with and the spatial structure of the solution near blow-up. Under the
Sundman transformation all three can be resolved, though perhaps some post-processing will be required to find
T more accurately. We now compare the results of solving (40) and (41) using the Matlab ODE solvers ode15s
and ode45. ode15s is an implicit code based on backwards differentiation formulae while ode45 is an explicit
Runge–Kutta code. Both methods use adaptive time-stepping based on local error estimation. For all tests will set
both the absolute and relative error tolerance to 10−8. The results of this test are presented in Table 1. From Table 1
we see that using the Sundman transformation leads to a more efficient solution but also one that can be computed
much further in to the singularity. In Fig. 2 we see that after an initial start-up period the ODE solver applied to
the rescaled problem settles on using a uniform computational step size. Thus, all the adaptivity is taken care of
by the Sundman transformation. However, the numerical simulation of the problem in standard form (40) is not
so straightforward. Firstly we see significant variation in the stepsizes suggesting that the local error estimator is
imprecise (a problem surely to be exacerbated when solving large systems) and secondly we recognize that even if
this was not a problem, the limiting factor is the minimum time-step that the solver can recognize. That is, we will
always be limited when

�tn∑n
i=1 �ti

∼ ε,

where ε denotes the machine precision. This will not be a problem when using the Sundman transformation.

4.5 Example 2

As a second example we will consider the closely related PDE example (1) with f (u) = u2. We have performed
two computations, one with the Sundman transformation in time and one without. Details of the spatial adaptation
strategy will be postponed until the following section; however, the ODE system resulting from this has, as described
in the previous section, exactly the same scaling properties as the ODE in Example 1 above and hence we again take
g(u) = 1/‖u‖∞. Results of these computations are presented in Fig. 3. Here we again see that through the use of the
Sundman transformation we are able to compute further in to blow-up and that the timestepping is much smoother.
Recall that this is using the scaling of the problem to perform the primary adaptation and step-size selection, not
the local information about the derivative approximations.

123

228 C. J. Budd, J. F. Williams

10
0

10
1

10
2

10
3 10

4
0

0.01

0.02

0.03

0.04

0.05

0.06

Computational step number

C
om

pu
ta

tio
na

l s
te

p
si

ze

Implicit

Explicit

1950 2000 2050 2100 2150 2200

10
−15

10
−14

Computational step number

P
hy

si
ca

l s
te

p
si

ze

Explicit solver in
standard form

Fig. 2 Example 1: (Left) Convergence to uniform computational steps when using the Sundman transformation. (Right) Rapidly varying
time steps when solving in standard form

1000 2000 3000 4000 5000 6000 7000

10
2

10
4

10
6

10
8

10
10

10
12

10
14

10
16

10
18

10
20

Computational Step Number

u(
0,

t n)

With the Sundman
Transformation

Normal form

(7557, 1.7e11)

(5205, 1e20)

(2871, 1.7e11)

10
2

10
4

10
6

10
8 10

10
10

12
10

14
10

16
10

−18

10
−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

u(0,t)

∆ t
n

Normal form

With the Sundman
Transformation

Fig. 3 Example 2: (Left) In this figure we see the growth of the solution size as a function of step number. We see that the Sundman
system integrates further faster. (Right) In this figure we see the physical time steps used by each approach. With Sundman these are

given by the solution method from solving dt
dτ

= g(u), in the standard approach these steps are chosen directly by the solver. Again
we see that the Sundman approach uses much larger steps. When dealing with the full system the solver gives up much earlier

5 Discretization methods

The simplest form of moving-mesh method is to use moving finite differences. While certainly not the best method
for all cases, it is the easiest to start with and use to get a good understanding of how the method works for different
problems. To this end, we have included an example code at http://www.math.sfu.ca/~jfwillia/ResearchCodes. For
examples using moving collocation see [12,13].

In one-dimensions MMPDE methods can be very effectively coupled to an underlying PDE system by using a
variety of different methods including finite-difference, finite-element and collocation methods. We describe two
such methods here.

123

http://www.math.sfu.ca/~jfwillia/ResearchCodes

How to adaptively resolve evolutionary singularities in differential equations with symmetry 229

5.1 Finite-difference methods

To motivate the discussion of appropriate discretizations, we assume that the underlying PDE system takes the form

ut = f (t, x, u, ux , uxx). (42)

If x(ξ, t) is itself a time-dependent function of a computational variable ξ then (42) can be cast into the Lagrangian
form in the moving coordinate system given by

du
dt

= f(t, x, u, ux , uxx) + ux xt . (43)

This introduces a nonlinear coupling between the solution components and the time derivative of the grid. Due to
this, we will need to solve a Differential Algebraic Equation for the solution to our system.

An effective method for solving (43) (in one-dimensional problems) is to use the semi-discretization approach
described in the previous section. In this approach we discretize the differential equation (43) in the computational
coordinates, together with a similar discretization of the MMPDE such as (29). It is common when doing this
calculation to introduce some additional smoothing by averaging the monitor function over several adjacent mesh
points [19]. In such a semi-discretization we set, as before,

Xi (t) ≈ x(i�ξ, t) and Ui (t) ≈ u(Xi (t), t).

These discretizations can then be substituted in (43) and the resulting set of ODES for Xi and Ui solved along with
the MMPDE. In the case of a singular problem this will usually also require a further scaling using the Sundman
transformation to give a suitably smooth system of ODEs.

dt
dτ

= g(u),

uτ − xτ ux = g(u) f (u, ux , uxx),

−xτξξ = g(u)
ε

(
M(u)xξ

)
ξ
.

(44)

The entire problem is solved using the method of lines with standard differences in space

ux (Xi , τ) = Ui+1(τ) − Ui−1(τ)

Xi+i (τ) − Xi−1(τ)
,

uxx (Xi , τ) =
(

Ui+1(τ) − Ui (τ)

Xi+i (τ) − Xi (τ)
− Ui (τ) − Ui−1(τ)

Xi (τ) − Xi−1(τ)

)
2

Xi+1(τ) − Xi−1(τ)
,

xξξ (ξi , τ) = Xi+1 − 2Xi + Xi−1

�ξ2 ,

(
M(u)x(ξi , τ)ξ

)
ξ

=
(

Mi+1 + Mi

2

xi+1 − xi

�ξ
− Mi + Mi−1

2

xi − xi−1

�ξ

)
1

�ξ
. (45)

This spatial discretization leads to a Differential Algebraic Equation of the form

h(τ, y, y′) = 0 = A(τ, y)
dy

dτ
− h1(τ, y).

With the vector y ∈ R2N+1 defined as

y = (t (τ), U1(τ), U2(τ), . . . , UN (τ), X1(τ), X2(τ), . . . , X N (τ)),

the matrix A ∈ R2N+1,2N+1 has the block form

A =
⎡
⎣ 1 0 0

0 −ux I
0 −∂2

ξ 0

⎤
⎦ ,

123

230 C. J. Budd, J. F. Williams

where

(−∂2
ξ)i j = 1

�ξ2

⎧⎨
⎩

1 if i = j = 1 or N or |i − j | = 1
−2 if i = j for 2 ≤ i ≤ N − 1
0 else,

(ux)i j =
⎧⎨
⎩

Ui+1 − Ui−1

Xi+1 − Xi−1
if i = j and 2 ≤ i ≤ (N − 1)

0 else.

Here we have assumed zero Neumann conditions on the solution and Dirichlet (constant in time) on the grid.
This allows one to easily compute the Jacobian ∂h/∂y′ = A to assist the DAE solver. The function h1(t, y) is
determined by (44) using the difference approximations above. The sample code solves this problem in Matlab
using the NDF code ode15i.m.

The system (45) can then be solved either alternately or simultaneously. The former is preferred for problems
in higher dimensions and the latter for one-dimension. On a static mesh, the truncation errors in calculating these
finite difference approximations are of second order provided that M does not vary too rapidly. We note, however,
that additional errors may arise from the additional convective terms arising from the mesh movement ux xt . This
additional term may lead to both theoretical and practical difficulties in applying the moving mesh methods. From a
theoretical perspective it is very possible that certain desirable properties of the equation (42) (such as Hamiltonian
structure and/or conservation laws) may not be inherited by the Lagrangian form (43). Note, however, that this term
scales as ut when the mesh equation is chosen correctly and thus scaling symmetries are preserved.

A practical difficulty, observed by [20] arises from certain discretizations of this term which can lead to instabil-
ities and degrade the accuracy of the calculation. For example, if a centered finite-difference approximation is used
to discretize ux then we have an additional truncation error given in [20] to leading order by:

ẋ
�2

i

2

(
xξξ

x2
ξ

uxx + 1

3
uxxx

)
. (46)

It was observed in [20] that as xξξ can, in general, be negative and ẋ large, then the term xξξ uxx/xξ2 can be anti-
diffusive (even dominating the diffusive terms in the underlying PDE), and hence destabilizing. This problem is
typically not encountered in the problems discussed in this paper as the underlying symmetries driving the mesh
adaptivity mean that this term scales as the other truncation errors in the equation and remains bounded throughout
the computation [21].

5.2 Collocation methods

Spline collocation gives a powerful method of discretizing the underlying partial differential equation in the physical
domain which has significant advantages over finite-difference and finite-element methods. In particular, it affords a
continuous representation of the solution and its derivatives, provides a higher order of convergence, easily handles
boundary conditions and gives errors independent of local mesh smoothness so that by using collocation we are able
to avoid the problem of approximating high-order derivatives over a widely non-uniform mesh [22]. It also discret-
izes the PDE in the physical domain
P and avoids the problems with the additional advective terms for the mesh
movement described in the previous section. A very effective spline-collocation discretization procedure coupled
to various possible MMPDEs is adopted in the moving-mesh collocation code MOVCOL described in [19] (with
extensions to higher-order systems using higher-degree Hermite polynomials, given in the code MOVCOL [13])
and this package has been used in many tests of adaptive methods in one-dimension; see for example [19] and [14].

6 PDE examples in practice

In this section we present detailed examples of many of the problems described in Sect. 1. In all cases we use a
moving finite-difference scheme for the PDE and (29). We set ε = 10−5 and varied N for the different examples.

123

How to adaptively resolve evolutionary singularities in differential equations with symmetry 231

0 2 4 6
0

0.05

0.1

0.15

x

t

Physical coordinates

0 0.5 1 1.5 2
0

1000

2000

3000

4000

5000

6000

y = x ||h||∞
3/2

τ

Rescaled coordinates

0 0.5 1
0

0.2

0.4

0.6

0.8

1
Rescaled solution in comp. coord.

h(
ξ,

t)
/h

(0
,t)

ξ

Fig. 4 Example 1: Some observations from integrating the thin-film equation. (Left) We see that the mesh clusters in the region of the
singularity but is not starved in the outer region. (Middle) The peak is resolved on a quasi-static grid in the rescaled variables. (Right)
The peak region merely amplifies in the computational coordinate. N = 61 for this calculation

The resulting system of ODEs was integrated using ode15i with relative and absolute tolerances set at 10−5. All
calculations were performed using Matlab on a laptop computer and run in a few minutes.

6.1 Example 1, blow-up in thin films

We begin with a challenging example by considering the unstable thin-film equation (3) with p = 4. This problem
is described in [23] and [24] with u representing the thickness of a liquid film. For initial data of sufficient mass
it develops a singularity in finite time of the form ‖h‖∞ = h(0, t) ∼ (T − t)−1/7. The solution approaches a
blow-up profile which is compactly supported in the similarity variable. This problem is invariant under scaling if
t → λt, x → λ3/14x, h → λ−1/7h and a scale invariant system then results from taking

M(h) = |h|7 and g(h) = 1

||M(h)||∞ .

While this problem does not have the exact structure of the parabolic heat equation, considered thus far, we know
[24] that the boundary of the blow-up region is given by the point x∗ ∼ O(L) (corresponding to the computational
coordinate ξ∗ where L = O((T − t)3/14)). In [13] this problem was solved by using a collocation method. Here,
however, we present an example computed using a moving finite-difference code. Typical results from a calculation
with ||h||∞ = 5e11 are presented in Fig. 4.

6.2 Example 2, the semilinear wave equation

Equation (4) is invariant under t → λt, x → λx , u → λ−2/(p−1)u. For this example we set p = 3 and used

M(u) = |u|2, and g(u) = 1

||M(u)||∞
to integrate until ||u||∞ = 1025. Moving-mesh methods can be difficult for hyperbolic problems as there is the
possibility of grid motion leading to spurious oscillations. However, this is not a problem here as the dynamics
occur on a very short period of physical time. In Fig. 5 we see that during an initial transient period the grid moves
to follow the dynamics before focussing at the location of the singularity.

6.3 Example 3, bubbling in harmonic maps

The harmonic map problem (5) is well studied in the geometry and applied-mathematics literatures. It has been
proven that there must be a finite-time singularity for a certain class of initial data in the radially symmetric setting

123

232 C. J. Budd, J. F. Williams

0 5 10 15
0

0.1

0.2

0.3

0.4

Physical coordinates

x

t

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
Rescaled solution in comp. coord.

ξ

u(
ξ ,

t)
/||

u(
⋅,t

)|
| ∞

10
0

10
4

10
8

10
12

10
−15

10
−10

10
−5

10
0

Scaling between dt and ||u||∞

||u(⋅,t)||∞

dt

Reference
 line(x,1/x)

Fig. 5 Example 2: (Left) The grid focusses where the singularity forms but does not starve the external region. (Middle) In the compu-
tational coordinates the solution remains static up to rescaling in amplitude. (Right) The Sundman transformation correctly determines
the correct time-stepping in the physical variables—here we see it �t ∼ ||u||−1∞ as expected. N = 61 for this calculation

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Physical coordinates

r

t

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

r

θ
Solution in natural coord.

0 2 4 6 8 10
0.2

0.4

0.6

0.8

1
Derivative in resc. coord.

r*θ
r
(0,t)

θ r/θ
r(0

,t)

increasing t ime

increasing t ime

Fig. 6 Example 3: (Left) The grid adapts to resolve both the inner and outer solutions. (Middle) A jump discontinuity evolves at the
origin. (Right) In the rescaled coordinates the derivative converges to a fixed profile. N = 121 for this calculation

[25]. Unlike our previous examples, the solution in this example remains bounded for all time but a derivative
singularity develops at the origin whose limiting behaviour is given by

θr (r, t) → 2R(t)

R(t)2 + r2 as t → T and R(T) = 0,

where the rate function R(t) is initially unknown. Because blow-up in this situation corresponds to a local rescaling
of space, we take M = |θr | + √

θrr to capture this and the transition out of this region. The sharp transition can be
seen in Fig. 6. For this example we used g(θ) = r∗ where θ(r∗, τ) = .01 to capture the evolving dynamics. This
was done based on the assumed linear asymptotic profile of the solution near the origin. Any value with r∗ < π/2
works equally well.

6.4 Example 4, pinch-off in thin films

Our methods are also not restricted to semi-linear problems. For example, the thin-film equation (6) is known to
exhibit finite-time pinch-off. Asymptotic analysis leads one to conclude that this involves a jump discontinuity in the
third derivative [26]. Based on asymptotics [26], we expect a solution invariant under t �→ λt, x �→ λ1/2x, h �→ λh.
This motivates M = 1/h and g = 1/||M(h)||∞. Again, the location of the singularity is not known in advance
and, in fact, may move. In Fig. 7 we see that the profile 1/h(x, t) converges to a similarity profile.

7 Conclusions

In this paper we have shown that carefully constructed r-adaptive moving mesh methods based upon symmetry
conditions inherent in the solutions, are an efficient, effective and accurate way to simulate singularity formation

123

How to adaptively resolve evolutionary singularities in differential equations with symmetry 233

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5
x 10

−3 Physical coordinates

x

t

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
Convergence to a stationary profile

ξ

m
in

(u
(⋅,

t)
)/

u(
ξ,

t)

0 200 400 600 800 1000
10

−15

10
−10

10
−5

10
0
Minimum height over comp. time

τ

F
ilm

 h
ei

gh
t

increasing
 time

Fig. 7 Example 4: (Left) We capture dynamics of the moving singularity on the adaptive grid. (Middle) The profile g = 1
h converges

to a similarity solution which is simply rescaled in amplitude in the computational coordinates. Note also the parabolic profile of
the maximum of g as predicted by asymptotics. (Right) We see that the Sundman transform has identified a time-scale on which the
finite-time pinch-off behaviour is resolved as τ → ∞. N = 241 for this calculation

in problems with symmetry. This enables us to capture both self-similar and approximately self-similar singularity
formation. As such behaviour is widespread in many physical problems (such as gas dynamics, optics, combustion
and astrophysics) it is likely that such methods will have wide applicability. They are simple to program and can
greatly extend the utility and accuracy of even naive finite-difference discretization methods.

This paper has concentrated on problems in one spatial dimension. Of course, most physical problems are
described in two or three dimensions. Two examples demonstrated the focusing behaviour in the nonlinear Schro-
dinger equation and the formation of weather fronts in meteorology. It is relatively easy to extend the ideas in this
paper to such problems and examples of successful implementations are given in [12,13]. We hope, and expect, that
further developments of these r-adaptive methods will lead to general tools which will allow the computation of
many types of singular behaviour for a wide variety of physical problems. Much still needs to be done, both in the
implementation of such methods and in their analysis. However, we hope that the examples described in this paper
have shown that there is great promise in the development of symmetry based r-adaptive methods for the future.

Acknowledgement The authors are grateful to the anonymous referees whose thorough comments greatly improved the text.

Appendix

Example Matlab driver code for the semilinear heat equation
function [tau,t,x,u] = SLH(N, tf)
% define the comp co-ordinate size

h = 1/(N+1);
% define the initial mesh
x = linspace(0,8,N);
u = exp(-2*x.ˆ2);
% Set up the initial vector for ode15i
y0 = [0;x; u];
yp0 = zeros(size(y0));

% Find consistent initial conditions.
opts = odeset(’RelTol’,1e-3,’AbsTol’,1e-2,’Jacobian’,@Jac);
[y0,yp0,resnrm] = decic(@uSLH,0,y0,[],yp0,[],opts,N);
% Lets go!
opts = odeset(’RelTol’,1e-4,’AbsTol’,1e-4,’Jacobian’,@Jac,’Events’,... @def-
out1,’Stats’,’on’);
Tvec = linspace(0,tf,200);

123

234 C. J. Budd, J. F. Williams

[t,y] = ode15i(@uSLH,Tvec,y0,yp0,opts,N);

tau = t;
t = y(:,1);
x = y(:,2:N+1);
u = y(:,N+2:end);
%——————————————————————–
function g = f(tau,y,N)
t = y(1);
x = y(2:N+1);
u = y(N+2:end);
% Set up the output vector
g = zeros(1 + 2*N,1);
g(1) = 1;
% Evaluate the PDE Right hand side
uxx = zeros(N,1);
i = 2:N-1;i=i.’;
uxx(i) = 2*((u(i+1)-u(i))./(x(i+1)-x(i)) - (u(i)-u(i-1))./(x(i)-...
x(i-1)))./(x(i+1)-x(i-1));
uxx(1) = 2*(u(2)-u(1))/(x(2)-x(1))ˆ2;
g(N+2) = uxx(1)+u(1)ˆ2;
g(N+3:end-1) = uxx(i) + u(i).ˆ2;
g(end) = 0;
% Evaluate monitor function.
M = abs(u);
Mc = diff(x’)*(M(1:end-1)+M(2:end))/2/x(end);
M = M + Mc;
% Smooth the monitor function
M(2:end-1) = (M(1:end-2)+2*M(2:end-1)+M(3:end))/4;
M(1) = .5*(M(1)+M(2));
M(N) = .5*(M(N)+M(N-1));
% The mesh equation
tau = 1e-4;
g(2) = 0;
g(N+1) = 0;
g(i+1) = -((M(i+1)+M(i)).*(x(i+1)-x(i))-(M(i)+M(i-1)).*(x(i)-x(i-1)))/tau;
%Sundman
g = g/max(M);
%——————————————————————–
function res = uSLH(tau,y,yp,N)
res = mass(tau,y,N)*yp - f(tau,y,N);
%———————————————————————
function out = mass(tau,y,N)
t = y(1);

x = y(2:N+2);
u = y(N+2:end);
% Set up the mass matrix for the DAE: M(y) y’ = f(t,y)
M1 = speye(N);
M2 = sparse(N,N);

123

How to adaptively resolve evolutionary singularities in differential equations with symmetry 235

M2(1,1) = 0; %Use the zero Neumann condition at x = 0;
for i = 2:N-1
M2(i,i) = - (u(i+1) - u(i-1))/(x(i+1) - x(i-1));
end
M2(N,N) = - (u(N) - u(N-1))/(x(N) - x(N-1));
% MMPDE6
M3 = sparse(N,N);
e = ones(N,1);
M4 = spdiags([e -2*e e],-1:1,N,N);
M4(1,1) = 1;
M4(1,2) = 0;
M4(end,end) = 1;
M4(end,end-1) = 0;
out = [M4 M3
M2 M1];
out = [zeros(2*N,1) out];
out = [[1 zeros(1,2*N)]; out];
%———————————————————
function [dfdy,dfdyp] = Jac(tau,y,yp,N)
dfdy = [];
dfdyp = mass(tau,y,N);
%———————————————————
% Events location function
function [v, ist, dir] = defout1(varargin)

y = varargin{2};
ist = 1;
dir = 0;
v = 1e25 - max(abs(y));

References

1. Tang T (2005) Moving mesh methods for computational fluid dynamics. Contemp Math 383:141–173
2. Mackenzie JA, Mekwi WR (2007) On the use of moving mesh methods to solve PDEs. In: Tang T, Xu JAdaptive computations:

theory and algorithms. Science Press, Bejing
3. Ceniceros HD, Hou TY (2001) An efficient dynamically adaptive mesh for potentially singular solutions. J Comput Phys 172:609–

639
4. Barenblatt GI (1996) Scaling, self-similarity and intermediate asymptotics. Cambridge University Press, Cambridge
5. Budd CJ, Piggott MD (2005) Geometric integration and its applications. In: Cucker F (ed) Handbook of numerical analysis.

North-Holland, Amsterdam
6. Budd CJ, Williams JF (2006) Parabolic Monge-Ampère methods for blow-up problems in several spatial dimensions. J Phys A

39:5425–5444
7. Budd CJ, Williams JF (2009) Moving mesh generation using the Parabolic Monge-Ampere equation. SIAM J Sci Comp 31(5):3438–

3465
8. Delzanno G, Chacón L, Finn J, Chung Y, Lapenta G (2008) An optimal robust equidistribution method for two-dimensional grid

adaptation based on Monge-Kantorovich optimization. J Comput Phys 227(23):9841–9864
9. Samarskii AA, Galaktionov VA, Kurdyumov SP, Mikhailov AP (1995) Blow-up in quasilinear parabolic equations. Translated from

the 1987 Russian original by Michael Grinfeld and revised by the authors. de Gruyter Expositions in Mathematics, 19. Walter de
Gruyter & Co., Berlin

10. de Boor C (1973) Good approximations by splines with variable knots II. Springer Lecture note series 363, Berlin

123

236 C. J. Budd, J. F. Williams

11. Huang W, Ren Y, Russell RD (1994) Moving mesh partial differential equations (MMPDES) based on the equidistribution prin-
ciple. SIAM J Numer Anal 31:709–730

12. Budd CJ, Carretero-Gonzalez R, Russell RD (2005) Precise computations of chemotactic collapse using moving mesh methods.
J Comput Phys 202:462–487

13. Russell RD, Williams JF, Xu X (2007) MOVCOL4: a moving mesh code for fourth-order time-dependent partial differential
equations. SIAM J Sci Comput 29:197–220

14. Budd CJ, Chen S-N, Russell RD (1999) New self-similar solutions of the nonlinear Schrödinger equation, with moving mesh
computations. J Comput Phys 152:756–789

15. Budd CJ, Rottshafer V, Williams JF (2005) Multibump, blow-up, self-similar solutions of the complex Ginzburg-Landau equation.
SIAM J Appl Dyn Syst 4(3):649–678

16. Beckett G, MacKenze JA (2001) On a uniformly accurate finite difference approximation of a singularly perturbed reaction-diffu-
sion problem using grid equidistribution. J Comput Appl Math 131(1–2):381–405

17. Budd CJ, Leimkuhler B, Piggott MD (2001) Scaling invariance and adaptivity. Appl Numer Math 39:261–288
18. Blanes S, Budd CJ (2005) Adaptive geometric integrators for Hamiltonian problems with approximate scale invariance. SIAM J

Sci Comput 26(4):1089–1113
19. Huang W, Russell RD (1996) A moving collocation method for solving time dependent partial differential equations. Appl Numer

Math 20:101–116
20. Li ST, Petzold LR, Ren Y (1998) Stability of moving mesh systems of partial differential equations. SIAM J Sci Comput 20:719–738
21. Budd CJ, Williams JF (2009) Optimal grids and uniform error estimates for PDEs with singularities (accepted)
22. Saucez P, Vande Vouwer A, Zegeling PA (2005) Adaptive method of lines solutions for the extended fifth order Korteveg-De Vries

equation. J Comput Math 183:343–357
23. Bertozzi AL, Pugh MV (1998) Long wave instabilities and saturation in thin film equations. Commun Pure Appl Math 51:625–661
24. Witelski TP, Bernoff AJ, Bertozzi AL (2004) Blowup and dissipation in a critical-case thin film equation. Eur J Appl Math 15:223–

256
25. Struwe M (1985) On the evolution of harmonic mappings of Riemannian surfaces. Comment Math Helv 60(4):558–581
26. Bertozzi AL (1998) The mathematics of moving contact lines in thin liquid films. Not Am Math Soc 45(6):689–697

123

	Abstract
	Abstract
	1 Introduction
	2 Singularities and symmetry structures in PDEs
	3 Introduction to r-adaptivity for blow-up problems
	3.1 Overview
	3.2 Moving mesh PDES and equidistribution
	3.3 Scale-invariant MMPDEs
	3.4 Temporal behaviour of scale invariant MMPDEs

	4 Temporal adaptivity
	4.1 Scaling in ordinary differential equations and the Sundman transform
	4.2 Other forms of step-size control
	4.3 ODE examples
	4.4 Example 1
	4.5 Example 2

	5 Discretization methods
	5.1 Finite-difference methods
	5.2 Collocation methods

	6 PDE examples in practice
	6.1 Example 1, blow-up in thin films
	6.2 Example 2, the semilinear wave equation
	6.3 Example 3, bubbling in harmonic maps
	6.4 Example 4, pinch-off in thin films

	7 Conclusions
	Acknowledgement
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

